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We explore the use of CycleGAN, a image-to-image Generative Adversarial
Network (GAN), in the style transfer between chest x-rays of healthy patients
and those with confirmed cases of bacterial or viral pneumonia. Furthermore,
we discuss the applications of these style transferred images as a means of
assisting clinicians in their diagnosis of these pathologies by using the network
to identify regions of interest in presenting patients.
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1 Introduction

1.1 CycleGAN

CycleGAN [1] is a Generative Adversarial Network (GAN) that performs image-to-image
translation. More formally, this can be expressed as the learning of a mapping:

G : X → Y

where X is a style of image (e.g. photos of landscapes) and Y is another style of image
(e.g. Van Gogh landscape paintings) to which we would like to perform style transfer
from the domain X. This type of style transfer is demonstrated in Figure 1.

(a) Original (b) Generated style transfer

Figure 1: An example of style transfer of a landscape photo using a CycleGAN network
trained on Van Gogh paintings

Unlike other image-to-image translation networks that require paired training exam-
ples that express a change in style with some invariance to other properties of the image
(e.g. a photo and a painting of the same scene), CycleGAN learns on two classes of
images that are unpaired. A network of this kind is of particular interest for problems
where the collection of paired training samples is unfeasible, or limits the quantity of
data that can be collected.

The lack of paired training data presents a significant problem if the standard ad-
versarial loss is used for the training of CycleGAN; it does not enforce that translated
images maintain their original properties that do not relate to the style transfer. By
way of example, if a style transfer of photos of people to paintings of people was being
learned, adversarial loss would not place a penalty on the painted person being unrecog-
nisable as long as the output image resembled the trained painting style. The network
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will learn to replicate samples from the painting domain, independent of the input, in
a process known as “Mode Collapse”. To address this problem, the loss function that
CycleGAN uses includes an additional cycle consistency loss:

Lcyc(G,F,X, Y ) =
1

m

m∑
i=1

[F (G(xi)− xi] + [G(F (yi)− yi]

This requires the learning of an inverse mapping

F : Y → X

so that the loss term can penalise the network for the difference between an original
image in one class, and the same image that has been transformed to the other class,
and back to its original class.

1.2 Style Transfer in Medical Imaging

Many applications of deep learning in the field of medical imaging relate directly to
building networks to classify or grade certain pathologies based on their presentation
in imaging [2]. Given, however, our own prior interest in style transfer we chose to ex-
plore how an image-to-image translation network could learn the features of a particular
pathology as a form of image style. Furthermore, we propose that a network of this kind
could overcome a perceived mistrust of “black box” classifiers in the medical profession,
by instead acting as a diagnostic tool that identifies regions of interest in a given image
by observing changes to the image after performing style transfer to the healthy class
and the pathological class.

A network that doesn’t require paired training examples was essential for exploring this
question given that we were unable to source a suitable medical dataset included paired
examples of the same patient in a healthy and pathological state. The use of CycleGAN
was a natural choice since it allowed us instead to use a dataset that included general
classes of healthy images and pathological images, with no relationship between these
images.

1.3 Dataset

For this project, we utilised a dataset of labelled chest x-ray images from a paediatric
hospital including healthy patients, and those presenting with pneumonia[3]. These
authors established the use of a deep learning tool for classification, rather than our
intended purpose of style transfer. The dataset includes 5,863 JPEG images of chest
x-rays of paediatric patients from Guangzhou Women and Children’s Medical Center,
Guangzhou. An example of our use of CycleGAN to generate style transfers on this
dataset is displayed in Figure 2.
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(a) Original (b) Generated style transfer (c) Reconstruction

Figure 2: An example of the network taking an image of a patient presenting with
pneumonia (a), generating a healthy style transfer (b), and attempting to
re-construct the original image (c).

2 Method

2.1 Pre-processing

The dataset images were provided de-identified, and cropped around the chest area. All
images in the set were high resolution (greater than 1000x1000) and had varying aspect
ratios. The images were first scaled to have minimum dimensions 283, then cropped to
256x256. The images are also randomly flipped horizontally to augment the data.

2.2 Network Architecture

Assuming that the network direction is A to B to A. The original image is transformed
via generator A to B, this fake image in B domain is evaluated against a real sample
from the B domain. The discriminators loss is propagated through the network and
is also used for generator A. The fake image is then converted back to domain A via
generator B to A where the same discriminator evaluation occurs.

The reconstructed image is then compared against the original image with the loss
function described above. This loss is applied with a factor λ in conjunction with the
adversarial loss to train the network. λ defines the importance of maintaining cycle
consistent results. The propogation of loss in the network is summarised in Figure 3. A
9 block ResNet [4] architecture is used for the generators and PatchGAN is used for the
discriminators.
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2.3 Training and Evaluation

Training occurred over 200 epochs, with 4000 iterations per epoch. Each epoch took
approximately 4200 seconds to run, making the total training time close to 240 hours.
Training took place on a GPU-accelerated PC with 5.2 Cuda Compute Capability.

Due to the qualitative nature of the image output the there is no definitive accuracy
metrics that can be applied. Furthermore, CycleGANs loss metrics over epochs were
unhelpful in providing a representation of the performance of the network. To evaluate
the network, the images were upscaled to 1024x1024 using bicubic interpolation, then
the difference was taken of each to highlight regions of greater and lesser change. The
results were analysed by us with additional comments from medical professionals.

Original Image
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Generator
A→B

Fake Image
Domain B

Real Sample
Domain B

Discriminator
B

Generator
B→A

Reconstructed
Image Do-
main A

Discriminator
A

Real Sample
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Cyclic Con-
sistency

+

+

L(B)

L(A)

Ladv(B)

Ladv(A)λLcyc
Ladv(A)

Ladv(B)

Figure 3: A visual representation of the propagation of loss through the network.

3 Results

Figure 4 demonstrates an example of style transfer from imaging of a patient diagnosed
with pneumonia, to a generated healthy counterpart. The original image shows fuzzy
heart border bilaterally, fuzzy diaphragm borders, blunted left costophrenic angle (sug-
gesting fluid in that region) and consolidation suggesting bilateral pneumonia. These
clinical signs are absent from the second, generated image. However, the network has
performed additional interesting changes; The ECG clips seen in the first image have
disappeared, along with the intravenous tube. The generator has also mistaken a screw
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behind the babies left armpit as the R (Right) symbol in the x-ray. Finally, the network
has also distorted the bone structure, fusing the uppermost rib bones and distorting the
shoulders.

(a) Original (b) Generated style transfer (c) Delta

Figure 4: The above set of images demonstrates the style transfer of x-ray imaging that
indicates pneumonia, to an image of a (fake) healthy counterpart. (c) Shows
the difference between these images.

Figure 5 demonstrates an example of style transfer from imaging of a healthy patient,
to a generated counterpart with pneumonia. Of note, image (b) shows bilateral haziness
suggesting pneumonia. Interestingly this introduced haziness is not uniform, this can be
seen as yellow highlights outlining the diaphragm and heart. The introduced haziness
in the lungs is particularly noticeable in the delta image.

(a) Original (b) Generated style transfer (c) Delta

Figure 5: The above set of images demonstrates the style transfer of x-ray imaging of a
healthy patient, to an image of a (fake) counterpart that has been diagnosed
with pneumonia. (c) Shows the difference between these images.
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4 Discussion

Through examination of the deltas from each image set, we can determine that the
basic lightening/darkening pattern associated with the disease is non-linear and follows
some complex, network defined function. The increase or removal of fuzziness specifically
around the heart and diaphragm is consistent with the clinical signs of pneumonia, which
demonstrates our networks ability to recreate certain medically accurate phenomena.

There are certain decisions made by the network which are influenced by the training
data. In sick to healthy transfers, the network removed ECGs, IV drips and intubation
tubing, this can be explained by a representation of these medical devices among the
sick samples and a lack among the healthy samples. This feature does not affect the
performance of the network negatively, however, there are additional changes which
reduce the quality of the output. From the sick to healthy transform the network can
be observed shrinking the chest cavity, oftentimes fusing the upper rib bones to the
neck. Additionally, the network will also fuse or distort the shoulder bones together. We
believe this is due to imbalances in the data set which are discussed further below.

Ultimately the network was able to recreate aspects of the disease from the healthy to
sick transfer and remove them from the reverse transfer. These features are however, low
resolution and difficult to apply to a clinical setting. The unexpected learned behaviour
is ultimately focused just outside the area of interest and should not cause the network
to be deemed a failure.

4.1 Dataset Asymmetry

Due to the lack of metadata in the dataset, a numerical conclusion is difficult to reach.
However, it appears that there is an over representation of sick younger children, to
healthy younger children and also an over representation of healthy to sick older children.
These biases in the dataset causes the network to skew results. It associates the sick
domain to features found in younger children, while associating the healthy domain with
older characteristics. This is apparent when viewing bone structures around the neck
and shoulders. The shoulder of a young child is made up of many separate bones which
fuse together as they grow older. Oftentimes, the network will attempt to transform this
area to more resemble a young child, in the case of a healthy to sick transform or apply
older features in the case of a sick to healthy generator. The overall shape of the chest
is also distorted, the sick samples having an overall elongated shape.
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4.2 Limited Resolution

Training large convolution based networks is computationally costly, due to time and
hardware limitations, 256× 256 was the chosen resolution. At this size, the image is of
reduced use to medical personnel. The first modification was to change the load and crop
size of the network. As the network is fully convolutional it should be scale invariant,
however, using a higher quality image as inputs to the network caused the outputs to be
distorted by high frequency noise as seen in Figure 6. The solution was to upscale the
images with a bicubic interpolation technique, while not introducing new information,
it allowed existing features to become more visible.

Figure 6: Distortion of the image is visible when a higher resolution image is used than
the resolution on which the network was trained

4.3 Cheating Network

Due to the adversarial nature of the network, researchers [5] have found the network to
exhibit steganographic behaviour. The network was “hiding” imperceptible information
in high frequency and low contrast bands when generating the fake image. This allowed
the network to recreate the original image near perfectly, even when the domain of the
fake image lost data from the original. Comparing the adaptive equalized histograms
of the paired dataset revealed the trickery. As we are using an unpaired dataset we are
only able to speculate on any self-derived encoding schema, however, the high frequency
noise seen in the enlarged images as well as certain aspects of the adaptive equalization
histogram suggest there may be some level of encoding happening.
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Figure 7: The above analysis indicates the possibility of CycleGAN engaging in stegano-
graphic behaviour, based on similar observations by researchers [5]

4.4 Future Study

While the scope of the research carried out in this paper is limited, there are many
exciting avenues of investigation to continue pursuing. These could lead to major im-
provements in the fields of AI-Assisted Medical Imaging and Machine Learning. Using
a variable sample size, with datasets as low as 50 images will test the networks ability
to accurately generate medical images. The network has already demonstrated accurate
style transfers using small sample sets of renowned artists, which gives promise to the
possibility of performing well on diseases. The ability to generate additional samples
would be invaluable to medical students and researchers investigating rare diseases.

For a medical network which aids doctors, high quality images are essential. Doctors
train with high quality x-rays and are restricted in the diagnoses that can be inferred
from low quality images. To achieve this, a “Growing GANs” approach is proposed.
Growing GANs [6] are most well known for generating photorealistic human faces; they
use many GANs which start small (4 × 4 pixels), each network doubling in size until a
high resolution image is produced.

This technique removes the difficulty of placing semantic tasks on a single network,
instead, spreading the load among many. For the use case of generating sick or healthy
chest x rays, the lower levels of the network could set out the structure of the image,
such as, the overall chest shape. At the next level, the more specific details such as
bones could be filled in. However, the network does not need to know where on the
image to place the bones as the previous network has already created a template. Each
successive layer fills in more and more details until a high quality image is achieved.
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This negates a major pitfall in using CycleGAN where it struggles to make structural
changes to the image, a canonical example being style transfer of dog images to a cat
images. To improve this growing GAN approach, cyclic consistency can be introduced
to avoid mode collapse.

A clear next step for the network is to apply datasets of different diseased samples.
Changing the disease represented in the sick samples is trivial for the network and would
simply be limited by training time. Additionally, the dataset could be modified to be
specific to a subset of a disease, increasing network fidelity. The network could also be
applied to certain treatments of the disease, which could visualise treatment outcomes
ahead of time.

As improvements continue, we see possibilities for completely novel fields in medical
imaging. “Predictive medical imaging” would allow doctors to use GAN-Like struc-
tures to identify and eliminate health problems before they arise. Doctors could view
a patient’s healing process from day one, using sequential models to introduce external
factors, with instantaneous results predicting health outcomes. Additionally this struc-
ture could be applied as a prognostic tool to predict how diseases will develop through
medical imaging.
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